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PREPACE

Mathematics is such a vast and rapidly expanding field of study that

there are inevitably many important and fascinating aspects of the suhject

which, though within the grasp of secondary sdhool students, do not find a

place in the curriculum simply because of a ladk of time.

Many classes 0=1 individual students, however, maY find time to pursue

mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the School Mathematics Study Group, is

designed to make material for such study readily accessible in claseroom

quantity.

Some of the pamphlets deal with material found in the regular curric-

ulum but in a more extensive or intensive manner or from a novel point of

view. Others deal with topics not usually found at all in the standard

curriculum. It is hoped that these pamphlets will find use in classrooms

in at least two ways. Some of the pamphlets produced could be used to

extend the work done by a class with a regular textbook but others could

be used profitably when teachers want to experiment with a treatment of a

topic different from the treatment in the regular text of the class. In

all cases, the pamphlets are designed to promote the enjoyment of studying

mathematics.

Prepared under the supervision of the Panel on Supplementary Publications
of the School Mathematics Study Group:

Professor R. D. Anderson, Louisiana State University

Mr. M. Philbrick Bridgess, Roxbury Latin School, Westwood, Massachusetts
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W. Karl S. Kalman, Lincoln High School, Philadelphia, Pennsylvania

Professoil Augusta L. Schurrer, Iowa State Teachers College, Cedar Falls
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THE SYSTEM OF VECTORS

Introduction: To the student

We hope you will find the material in this pamphlet

inresting, stimulating and rewarding. You will

experience little difficulty in understanding the

concept of a vec'or even though your preparation in

Mathematics may not be very extensive but at the

same time a reasonable mastery of the subject will

prepare you for more advanced work. Of the many new

ideas you will encounter in these pages we should

like to mention three which are of particular inter-
est. First, we hope you will be impressed with the

solution of Geometry problems by vector methods.

Also, this material has tremendous application to

problems in Fhysics and this is demonstrated in the

text, although you should be reminded that this

section requires a knowledge of some elementary Trig-
onometry. Finally, should try yourself out on the

last section which is concerned with Vectors as a
Formal System.
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THE SYSTEM OF VECTORS

1. Directed Line Segments.

It is assumed in this pamphlet that you are familiar with
plane geometry. We review some of the symbols of geometry. AB

means the line which contains the distinct points A and B
AB means the ray whose vertex is A and which also contains the
point B . IAB1 means the distance from A to B (and from
B to A). It is a positive real number if A and B are
distinct. It is zero if A and B are the same.

We need one Purther idea which is not ordinarily covered in

geometry--that of parallel rays. Rays are said to be parallel

if they lie on lines which are either parallel or coincident,
and if they are similarly sensed. Figure la shows typical

instances of rays which are parallel and of rays which are not

parallel, and is supposed to take the place of a formal defi-
nition.

A

A Et

o A

ri/am.

A

AEI 0 C

--OPP --O --Owrays AB and CD are rays AB and CD are not
Parallel Parallel

Figure la
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DEFINITION la. A line segment is said to be a directed

line segment if one of its endpoints is designated as

its initial point and the other endpoint is designated

as its terminal point. We use the symbol itia to

denote the directed line segment whose Initial point

is A and whose terminal point is B .

We say that directed line segments AB and CD are

equivalent, if it is true that their lengths are the

same and also that the rays ;rand arare parallel.

We write AB = CD to denote the fact that AB and
ft are equivalent.

Note: We consider that a single point can be both initial

and terminal point of the sane directed line segment and we

consider that all such directed line segments are equivalent to

one another.

A B

AB A CD

Figure lb

C

A

Figure lb shows some pairs of equivalent directed line segments.

It uses the convention that the endpoint of a segment which has

an arrow is the terminal point of the segment. Notice that if

A, B, C, D are not collinear, then AB = CD if and only if

ABEIC is a parallelogram. We need the fact that if AB is any

directed line segment and if C is any point, then there is one

and only one point D such that a a. . Ye do not prove this

fact, but assume that it is known from the study of geometry.
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DEFINITI4N lb. Let AB and CD be any two directed

line segments. Then by their sum .ZEi + CD we mean

the directed line segment AX , where X is the

unique point sucn that Et A CD .

We call the operation which assigns their sum to each

pair of directed line segments the addition operation

for directed line segments.

Figure lc shows some sums of directed line segments.

Figure lc

AX +

AB + CC

Directed line segments can be added and multiplied by real

numbers in a useful way. We give the formal definition of these

operations here. Their properties are studied and applied

throughout the rest of the chapter.
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DEFINITI0E. Let WI be any directed line segment

and let r be any real number. Then the product

rAB is the directed line segment id where X

is determined as follows:

(1) If r > 0 , then X is on the ray At
and IAXI rIAB1 .

(2) If r < 0 , then X is on the ray

opposite to and IAXI -rIABI .

(3) If r .8 0 , then X = A .

(4) If B A then X - A .

Figure ld shows some typical products.

A U a

0 AB - AA

1 AB = AB

2

;it% 415

1!

-1 AB - At

-2 AB AF

Figure ld

It is useful tc know that it equivalent directed line

segments are added to equivalent directed line segments the sums

are equivalent, and that if equivalent directed line segments

are multiplied by the same number the products are equivalent.

We now state these facts formally as theorems and illustrate them.

1 0
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THEOREM la. If 1g CD and if PQ ; RS

then PQ CD -I- RS .

AX = CY

Figure le

Figure le shows a typical instance of

equivalent to the fact that if ABCD

XYDB is a parallelogram, then AXYC

is a special case of a famous theorem

Desargues' Theorem.

THEOREM lb. If AB tt, and if r

then rAB relb

DC--

+ Ps

this theorem. It is

is a parallelogram and if

is a parallelogram. This

of geometry known as

is any real number,

AX = rAB; CY - rOD; AX : CY

Figure lf

Figure lf illustrates a case in which A, B, C, D are not

collinear. It also illustrates the geometric version of the

statement, that if AB= is a parallelogram and if AX - CY

then AXYC is a parallelogram.

I



Exercises 1

1. A and B are distinct points. List all the directed line

segments they determine.

2. A, B and C are distinct points. List all the directed

line segments Cley determine.

3. A, B, C and D are vertices of a parallelogram. List all

the directed line segments they determine, and indicate

which pairs are equivalent.

A a

L
4, In triangle ABC

(a) AB + BC ?

(b) BA + ? = 5-Z .

(c) ? + BA = BC .

(d) ? +

(e) (AB + BC) = elk = ?

(0 BA + (AC + fft) ?

(g) ? + AC CB .

A, B and X are collinear points. Find r such that

i6C = rAB

and s such that

if

X

B

A

is the midpoint of segment Mg .

is the midpoint of segment

is the midpoint of segment MR .

X is tWb-thirds of the way from A to B

B is two-thirds of the way from A to X .

A is two-thirds of the way from B to X .

I



15. In triangle ABC s X is the midpoint of R. and Y is
the mldpoint of segment

(a) EX = BA + ?AC .

(b) = ?BY .

(c) El = Eb + ?

(d) EX = BC + ?

(e)

(r) . ?(11 + TR) .

(g) go . + 51Z .

2. Applications to Geometry.

It is possible to use directed line segments to prove
theorems of geometry. These proofs are based on algebraic

properties of directed line segments. They are quite different

from proofs usually given in geometry which appeal to such

matters as congruent triangles and the like.

We state and illustrate the necessary algebraic properties
of directed line segments here. We prove these statements in

Section 3.

I. Commutative Law:

epb = CD + AB .

Figure 2a shows an instance of the commutative law for

addition in which the directed line segments t and b15 have
a common initial point.

+ CD CD + AB

Figure 2a

1 es



8

II. Az ociative Law:

AB + (CD + EF) (At + CD) + EF .

Figure 2b shows sums AB + (CD + EF) in which B and C

are the same and D and E are the same.

Ds E

AB + (al + EF) (AB + CD) + EP -

Figure 2b

III. Existence of Zero Elements.

Every directed line segment of the type AA is a

zero element because PQ + AA = PQ .

IV. Existence of Additive Inverses.

BA is the additive inverse of 5: because

AB + BA = AA .

We use a negative sign to denote the additive inverse of a

directed line segment AB 1 and write - AB for BA . We also

write PQ - AB for Poll + BA .

This operation of subtraction is illustrated in Figure 2c.

AC Rt + BC

AC - AB BC

AC + BA - BC

Figure 2c



V. The Associative Law.

r(s.054)

A

Figure 2d

Ia.- 70AB) - i(AC) = AD

(_ .4)AB - 2AB = AB .

Figure 2d shows an instance of the associative law in which
1

VI. The Distributive Laws:

rgt + CD) . + rCD

(r + s)AB rAB + sAB .

Lat QP 4CD

lab . 4A1.+ 4CD

4(AB + Et) 4AB + 4CD

AP = 4AD

Bz C 0

Figure 2e

9

Figure 2e illustrates the first of the two distributive laws

for r r 4
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9

Figure 2f

Figure 2f illustrates the distributive laws for r . 4

a = -2 .

AD = AC - DC

211 = +CD

(4 + (-2))AB = 4A15 +

The combined effect of all these laws can be summed up

briefly as follows:

Directed line segments obey the familiar rules

of algebra with respect to addition, subtraction,

and multiplication by real numbers.

We now show how this algebra of directed line segments can be

applied to proving theorems of geometry.

Example 2a. Show that the midpoints of the sides of any

quadrilateral are vertices of a parallelogram.

Proof: Let ABCD be the quadrilateral (see Figure 2g)

and let X, Y, Z, T be the midpoints of its sides as indicated.

It is sufficient to show that 27. A since this implies'both

that II TZ and that 1XY1 = ITZ1 .

We have

and

)11 . + kiC

l-TZ-AD+DC
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Since tt tl + It + BC , we also have

A in - in + iAB + BC

a in + .

This shows that /41 172 .

Example 2b. Prove that the diagonals of a parallelogram

bisect each other.

Solution: Let ABCD be the parallelogram (see Figure 2h).

Figure 2h

Then the midpoint of WU is the endpoint of igt + Bc) . The

midpoint of tg is the endpoint of Ag+ ir(B1 + AB) which

equals Zt + irAD or + . We show that this is the
1.-same as .ffAB + .2!BC . Since ABCD is a parallelogram, AD A 176

1..ft 1--so the last sum is certainly equivalent to rb. + TEC . We

conclude that these directed line segments are the same by

noticing that in addition to being equivalent they also have the

same initial point.

gxample 2c. Prove that the medians of a triangle meet in

a point which trisects each of them.

1 7
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Solution: Let ABC be the triaLgle (see Figure 20.

Let X, Y, Z be the midpoints of its sides. Then, the point two-

1-a*.%thirds the way from A to X is the endpoint 11AB + .14C) .

The point two-thirds the way from B to Y is the endpoint of

The point two-thirds the way from C to Z is the endpoint of

We show that these three directed line segments are one and the

same. We use the fact that + .

Then the first is equal to

which is equal to ;CA

or Tuo + .

The second is equal to - + 7 which also equals

+ Yit

14ftThe third is equal to - -126 + rib which also equals

71116 + 711t

s
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gxample 2d. Prove that the line which joins one vertex of

a parallelogram to the midpoint of an opposite side is trisected

by a diagonal. Prove also that it trisects this diagonal.

Solution: Let ABCD be the parallelogram (see Figure 2j).

Let A be the given vertex and let X be the midpoint of 55 .

Figure 2j

We are to show that the point two-thirds of the way from A to

X is the same as the point two-thirds of the way from D to B

or

The first point is the endpoint of

2
.3-(AB + 713c)

2-4- 1-4.TAB + TBC

The second point is the endpoint of

This latter equals

11:f+;(51 .

AD - 2AD + 2Kt77
1 2
--sAD +

Since AD is equivalent to BC we sea that these two

directed line segments are equivalent; that they are in fact the

same follows from the additional fact that they have the same

initial point.



Exercises 2

1. If ABCD is a parallelograms express tt .

(a) in terms of DC and DA .

(b) in terms of tot and CB .

(c) in terms of At and BC .

(d) in terms of AB and KB .

(e) in terms of BA and It A 8

2. If A and B are distinct points, identify the set of all

terminal points of the directed line segments of the form

t 5. for which

(a) t 2 0 . (c) t 1 .

(b) 0 t 1 . (d) -1 t .1;1 .

3. If A, B, C are non-collinear points, find the set of all

terminal points of directed line segments of the form

r AB + s AC

for which

(a) r 0 s arbitrary.

(b) s 0 , r arbitrary.

(c) 0 2.,s arbitrary.

(d) 0 < s < 1 $ r arbitrary.

(e) 0 <r<1 , 0 <s<1.
(f) r I s arbitrary.

(g) s = 1 $ r arbitrary.

*(h) r + s 1 .

*(i) r - s . 1 .

(j)

(k) 6r + 7s 8 .

e(1) ar + bs + c 0 , where ao bo c are real numbers

and where not both a and b are zero.

4. Show by an example that subtraction of directed line

segments

(a) is not commutative,

(b) is not associative.
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5. In the following figure

ABCD , EOOB , and HDP-0 are each parallelograms. Prove

that their respective diagonals EG RIF , extended

if necessary, meet in a single point X .

6. ABCD is a parallelogram and P, S are the midpoints
of the sides.

Fbr each of the following directed line segments, find an

equivalent directed line segment of the form r EIZ + s .

7. Show that the four diagonals of a parallelepiped bisect

one another.
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3. Vectors and Scalars amponents.

When we define, as in Section 1, operations for the set of

directed line segments, this set will be called a set of vectors.

The real numbers which we use as multipliers for these vectors

will be called scalars.

Neither the nature of the directed segment nor that of the

real nutber has been changed. They are now, however, all seen as

parts of a larger entity, a vector space. It is relative to this

new system that they are being renamed. From now on we shall cail

a directed line segment a vector. We shall call a real number a

scalar if and when it multiplies a vector.

We are going to discuss equivalence of vectors, addition of

vectors and multiplication of vectors by scalars in terms of

coordiantes. The following theorem is the basic tool in this

discussion.

THEOREM 3a. Let A, B, C, D have respective coordinates

(a1,a2 ) , ( b2) (c1,c2) , (d1,d2) . Then

g
if and only if

bl al = dl - el

Proof: Figure 3a illustrates Theorem 3a.

MMOOMMEMEM
MMERMOMMEM
MMIIMMEMMOM
MEMMINIMEM

MINIMEMMEMMMENEM
MR
WM COMM=

MUMEMO
INIFEEMMERM
MEMEMEMMEM
MEMOMMOMMO

MMOMMEMMIIMM
MMOMMEMMOMM
MMOMMMOIMMEM
IIMMEM2MM
MMOMMEME
EMU WPM=
mom sumammi
IIIMMUMAIMMEM
MMOMMINIMMEM
MEMOMMONIMMO

D(4,4)

Figure 3a

AB is equivalent to CD

2 - 1 4 - 3
- 2 . 3 - 1

AB is not equivalent to CD

24:'-2/4-1 %It
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We give only a few indications of the proof of this theorem.

If bl - al d1 and if b2 a2 d2 c2

then

%(b
1

- a
1/

1
2 ,

02 a2)
2
m (d c )

2
+ (d

1 1 2 c2)
2

and

b
2

- a
2

d
2

--c
2

T7-7717.- Z7-7-7
1 1

provided that

b
1

- a
1
/ 0 and d

1
- c

1
/ 0 .

We conclude that IABI ICD1 and that AB irtliw. This

makes plausible the fact that if the given equations hold then

Kg A CD . It doesn't completely prove this (we need kt II EB )

and it doesn't contribute at all to the proof of the converse.

Corollary. If 5P is the vector equivalent to AB , where

0 is the origin, then P has coordinates (b1 - al b2 - a2) .

DEFINITION 3a. If A is the point (a11a2) and B is

the point (b1,b2) , we call the number ba. - al the

x-component, of Kg , the number b2 - a2 the 2..-component

of At .

In most discussions of vectors the initial and terminal

points of the vectors are not as important as their x and

y-components. We shall therefore often specify a vector by

giving its x and y component. We use square brackets [ ]

to do this; [psq] means any vector whose x-component is p and

whose y-component is q . We shall sometimes denote vectors by

single letters, with an arrow above, like 1 , when the specific

endpoints are not important. We also write A.= B tR assert

that two vectors are equivalent. The equal sign shou1gi4proper1y

connect not the vectors themselves but their components. Thus

Theorem 3a can be restated as follows:

e't
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If lt is (x13x2) and It is (y1,y2) then

if and only if

5,1 and x2 y2 .

We use the symbol IXI to denote the length of X . We have

1[2:1,x211 .N4, 2 + x
2
2

We turn now to the addition and multiplication operations

for vectors, show how they can be effected in terms of components,

and prove the basic algebraic laws stated for them in Section 2.

THEOREM 3b. If It is (x1,x2) and if 111 is (yi,y2]

then "R + is 1(x1 + x2) (yi + y2)) .

Proof: By definition of addition for vectors (see Figure 3b)

z(x1 + yl, x2 + y2)

YCy 'Yr
tx2)

Figure 3b

OZ is 5R 4- n if and only if 5a A OY . According to

Theorem 3a, this will be so if and only if the point Z is

(x1 + yi , x2 + y2) . It follows that the components of X +

axe x
1
+ y

1
and x

2
+ y

2
.



Corollary. Addition

It

Corollary. Addition

+

of vectors is commutative.

+ - .

of vectors is associative.

Corollary. There is a zero vector [010] .

Corollary. Every vector 1 has an additive inverse -1
If It is (x13x2) then Ihc is [-x12-x2] .

THEOREM 3c. If lt is [xl,x2] , then a is (rx1,rx2)

Then

Proof: Let Y be the point (rx1,rx2) , (see Figure 3c).

Figure 3c

10/1 -A/Irx1)2 + (rx2)2 1r1v412 x22

19

Also 0, X, Y are collinear, since they are on the line whose

equation is x2x x
1
y 0 . We must show that the ray OX is

parallel to the ray OY to complete our proof. We omit this
part of the proof.
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Corollary. Multiplication by scalars is associative.

r(A) (r01

camlum. Multiplication by scalars obeys the

distributive laws.

r (I + V) =8 rX +

( r + ir( + slith

Corollary. (-1)11 :R .

Corollary. If 1 is [x1,x2] and if 1:

then 1-1 + s is (rx1 + syl rx2 + sy2) .

is [y1,y2]

DEFINITION 3b. Non-zero vectors X and Y are said to

be parallel if and only if the directed line segments

OX and OY equivalent to them are collineux.

Figure 3c

ITHEOREM 3d. Non-zero vectors 7 and F are parallel if and

only if

for some non-zen real number r .



Proof: Let be (x1,x23 and V be (y11y2] ; let X

be the point (x1,x2) and I be the point (y1ly2) . Then

OX a p OY a V . Then I I I? if and only if 0, X, and Y
are collinear. But

if and only if

OX=r0Y

X1 on ry1

x2 ry2

and this holds if and only if 0, X, Y dre coll:thear.

11111111111EIM1111111111

1111111MillmEMEIMmommisiami
11111111111.111111mumrmains

MIIIIIIIIMMINIIIMM111111111111111
MURRURURURURRIRI
IMPIPIA1111=11111111111111
INAIIMENNUMERIME
iniEMNIMMIMMVx(614)
11111111111111111111MINIMI
MIENIIMMIgni

Y 1111
REIMENIMINaffil
1111111111111miliMIEREM

111111111111111111111111111MEN

Figure 3d

x not parallel to y

22

T}EOREM 3e. Let and V be any pair of non-zero, non-parallel

vectors. Then for each vector Z there are numbers r and

s such that

Proof: Let 1, "1,

a .

be [x1,x2] ty1,y2]

respectively. We are to snow that the equations

z

z 2

{z1,z21

for r s
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have a unique solution (r,$) . Since X is not parallel to /

it follows from Theorem 3d that

x1Y2 Y112 i

Corollary. If . 17 (where 15 is a zero vector),

and It and / are non-zero, non-parallel vectors, then

r s O .

DEFINITION 3c. Any two non-zero, non-parallel vectors

in the plane could serve as a basis for all the vectots

of the plane.

Figure 3e
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Figure 3e shows two base vectors it and 1? and vectors
52 and 51 expressed in the form it + .

[1,0] and [011] form a base which is frequently used.
The vector (1,0] is denoted by t and the vector [0,1) is
denoted by .

THEOREM 3f. 1. it + bY' if and only if 1 is (apb] and
(a,b) is the point F for which

u OF .

Proof: If 1 is (a,b) , then, since

(a,b) a[l,0] + b[0,l)

it follows that

It= + 107 .

If It+ + 131 then

a[1,0] + b[0,1) [sob]

(0,2)

(0,J)

(3,2)

(1,0) (3p)

Figure 3f

3T+2i

Figure 3f shows an example of a vector 1Z expressed as a
2111111 A -I- 27

4-.,"



Exercises 3

1. If A, B, and C 'are respectively (1,2) , (4,3) , (6,1)

find X so that

(a) Kg A . (c) 5 .

(b) a CB . (d)

2. Same as Problem 1, if A, B, C are respectively (-1,2) ,

(4,-3) (-6,-1) .

3. Find the components of

(a) [3,2] + [4,1] .

(b) [3,-2] +

(c) 4(5,6]

(d) -4[5,6] .

(e) -1[5,6] .

(f) -[5,6] .

(g) 3[4,1] + 2(-1,3] .

(h) 3[4,1] - 2(-1,3] .

4. Determine x and y so that

(a) x[3,-1] + Y[3,1] = [5,61 .

(b) x[3,2] + y[2,3] - [1,2] .

(c) x[3,2] + y[-2,3] [5,6] .

(d) x[3,2] + y[6,4] = [-3,-2] (infinitely many solutions).

5. Determine a and b so that

(a) [3,1] - al + bT . (c) = a(-3,1] + b[1,-3]

(b) [1,-3] ai + b7 (d) l'= a[-3,1] + b[1,-31 .

6. Determine a and b 30 that

- . a(31n + 4T) + b(4T + 3T) .

Inner Product.

Our algebra of vectors does not yet include multiplication

of one vector by another. We now define such a product.

We first say what we mean by the angle between two vectors

X and Y which do not necessarily have a common initial point.

30
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DEFINITION 4a. Let It and be any non-zero vectors

and let OX and OY be vectors whose initial point is

the origin 0 and which are equivalent respectively to

and It . Then by the angle between X and it we

mean the angle between OX and OY .

DEFINITION 4b. Let It and I be any vectors. Then

the inner product of T and it is the real number

111 171 cos e

where X is the length It , 171 is the length of

and 8 is the angle between and 1 . (If or

is a zero vector then 8 is not clef::: d. We interpret

the definitions to mean that the innt, product is zero,

in this case.)

The inner product has important properties. Before we

investigate these properties of the inner product we relate the

inner product to a familiar mathematical relation--the law of

cosines.

If our given vectors X and y are not parallel they

determine a triangle OXY , where 0 is the origin and where

X and Y are endpoints of the vectors OX and OY

respectively equivalent to 1 and Y . We can find at least

one earlier appearance of the inner product by applying the law

of cosines to the triangle. It, asserts (Figure 4a)
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Figure ka

IRY12 1.(5X12 + 215,1 roll cos 8

lai 1511 lal2 151i12

2

Thus the expression we have called the "inner product" is

suggested by the law of cosines.

We sometimes denote this product by the symbols -k**

(read "1 dot 1") and sometimes call it the "dot pnoduct."

Usually, in algebra, a multiplication operation for a set

of objects assigns a member of this set to each pair of its
members. The inner product is not an operation of this type.

It does not assign a vector to a pair of vectors but rather it

assigns a real number to each pair of vectors.

whence

Example. 4a. Evaluate I I^ if 111 u. 3 and

(a) o - 0 (b) 9 34 45° P (0) 8 um 900 (d) 8 = 180° .



Solution:

(a) I' .
) 7

(c ) I I -
(d)

2

2

2

2

3 cos 0o = 2 - 3 - 1 = 6 .

3 cos 45° . 2 . 3
3,1/2.

. 3 cos 900 = 2 3 0 = 0 .

3 cos 180° = 2 . 3 (-1) = -6 .

The inner product has many applications.

for perpendicularity.

27

One of these is a test

THEOREM 4a. If and I are non-zero vectors, then they are
perpendicular if and only if

o .

Proof: According to the definition of inner product

25 cos 8
This product of real numbers is zero if and only if one of its
factors is zero. Since and 7 are non-zero vectors, the
numbers It and 61 are not zero. Therefore the product is
zero if and only if cos 8 = 0 which is the case if and only
if 5r and t' are perpendicular.

The followiRg theorem supplies a useful formula for the
inner product of vectors.

THEOREM 4b. If -Z = x ,x2] , = [yl,y2]

x1y1 x2y2

Proof: According to the law of cosines (see Figure 4b)

then

3 r
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Figure 41)

'OM 10Y1 cos 9
In12 rcriiP

2

sit -L.

x,2 + x2
2
+ Yi

2
+ Y2

2
- (x1 Y1)

2
(x2 2)2

2

xlyl + x2y2

Since, by definition, the left member of this equation is

1 It our theorem is proved.

Exampa 4b. If 1 is [3,4] and Y is [5,23 , find

x.Y.
Solution: lt = 3 5 + 4 2 23 .

Example 4c. If ic is (3,7) and is [-7,3] 0 show

that 1 and 41i' are perpendicular.

Solution: 1 1 3(-7) + 7 3 0 .

The conclusion follows from Theorem 4a, and the fact that -5E

and Y art non-zero.
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A usefUl fact about inner products is that they have some of

the algebraic properties of products of numbers. The following

theorem gives one such common property.

THEOREM 4c. If /t, 1 are any vectors, then

. ("1 + . + . 1
and (ti) . 7 ta . .

Proof: Let = [x1,x2] 11'14'2] [zi

Then 1 Cr + = (x1,x2]
(5r1 zl 2 z]

= x1(y1 + z1) + x2(y2 + z2)

= x1y1 + x2y2 + x1z1 + x2z2

+ 1

(R) 7 . [tx1 ]
a

IY1a23

= tx
1
y

1 + tx25r2

-

Corollary. I (Es.- + 1)1) = a( 7) + bri 1) .

In certain applications of vectors to physics the notion of

a component of a vector in the direction of another vector is

important. We now define this concept.

DEFINITION 4c. Let X be any non-zero vector and let 1?

be any vector. Then the component of 1? in the direction

of 1 is the number given by each of the following equal

expressions:

61"t Pos 8 mg 1.1 cos 8

NOTE: The component of It in the direction of I can be
described geometrically (see Figure 4c).
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0

Figure 4c

In both parts of the figure, P is the foot of the perpen-

dicular from the initial point of Y to the line of -51 and Q

is the foot of the perpendicular from the terminal point of It

to this line. In the first part the component of It in the

direction of it turns out to be the distance from P to Q .

In the second part this component turns out to be the negative

of the distance from F to Q .

The inner product is used frequently in applications of

vectors to physics. For the moment we consider inner products

from a purely mathematical standpoint.

Example lid. Let X be any vector parallel to the positive

x-axis, let It be any vector parallel to the positive y-axis

and let 1 be the vector (PA) . Show that p and q are the

components of t in the direction of It and 1 respectively.

Solution:

so

Since

p . (cos e ) iv/F/2 q2

..\42 _2
q we conclude that

p al cos 9-



The angle between Z and the y-axis is ir e

Consequently the component of 1 in the direction of 1 is

cosi - 6 ) VP2 + q2

Since cos( - e ) sine and since sin G 0

we conclude that this component is, in fact,

31

11/P2 + (12

, or
v/p2 (112

q .

Vectors in Three Dimensions.

Much of our discussion of vectors in the plane can be
carried over to three dimensions with only minor.modifications.

The portions about directed line segments require no modifi-
cation. When we come to coordinates and components, the
conclusions are as follows:

1. The components of a vector in three dirensional space
are an ordered triple (a,b1c] of real numbers.

2. Two vectors (a,b,c) and (pmq,r1 are equal if and
only if a.ip,bmieq and ci.r.

3. The addition of vectors fa,b,c] and [ma] is
given by the rule

(asb,c) + (p,q,r) [a +p,b+q,c+ r) .

4. Scalar multiplication of vectors is given by the rule

r[apb,c) (ralrbsrc) .

5. The unit base vectors associated with the coordinate
axes are

[1,0,0]

(0,1,0)
[0,04] .



32

Figure 4d shows these base vectors.

Figure 4d

The vector V ki + i3k is illustrated in

Figure 4e.

The inner product of V and W is still given by

i7 tiZ 11 COS 8 .

In component form, if -17 is [1,10v2,v3] and 1-71

is (w
1,
w
2'
w
3

then

V W vlwl + v2w2 + v3w3

also m .1412 v22



I. Find re 7 if

(a) -re 1 , -
b ) , ? .

(C )

(d)
(e)

2. Find

and

'

Exercisss 4

- I + , -
the angle between

3r / is

(f) 2T +
(g) -2-r -

(h) aT + ,
(i) at + ,

- . n - + ,

5t and -1- if al 2

(a) 0

(b) 1

(e) -2

(d) 3

3. If g' - 3r + 24.3- , determine

to 2. , if is

(a) ar
(b) ar

4. Find the

Exercise

5. If a
2

+

cr +

6. Find the

(a) I...

(b) -
(c)
(d)

33

(e) -4 .

CO 5 .

(g) 6 .

(h) -6 .

a so that is perpendicular

(c) .

(d) at-33.
angle between 5r and It in each part of

1 abw..1.

b
2 / 0 prove that aT + b.f. is perpendicular to
if and only if aT + br is parallel to -dr+

component of in the direction of -5; if

T 3T + . (e) . 3T + + .

- + 141.. (f) + 14r + .

3r + . (g)3t+,.aT+b.
( pr + aT + 14'

5. Applications of Vectors in Physics.

The notion of "force" is one of the important concepts of
physics. This is the abstraction which physicists have invented
to describe "pushes" and "pulls" and to account for the effects
that pushes and pulls produce.

39
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The student who knows something.about vectors can readily

learn about forces. The connecting linke between the concepts

of "force and "vector" can be stated as follows:

1. Every 2orce can be represented as a vector. The

direction of the force is the same as the direction

of its representative vector. The magnitude of the

force determines the length of its representing

vector, once a "scale" has been selected.

Example la. A red-headed man is standing on top of a hill,

staring into space. Re weighs 200 pounds. Represent as a

vector each of the following:

(a) the downward pull of the earthls gravity on him,

(b) the upward push of the hill on him.

Solution: (a) (b)

Scale: 1 inch represents Scale: 1 inch represents

200 pounds 200 pounds

2. Any collection of forces which act on a single body

is equivalent to a single force, called their

resultant. If all the forces are represented as

vectors on the same scale, then the vector which

represents the resultant of the forces is the

sum of these vectors.

IME50151. Represent each of the following forces as a

vector, and find the vector which represents their resultant:

A force F1 of 300 pounds directed to the right, a force F2

of 400 pounds directed at an angle of 45° with the x-axis

and a force of 500 pounds directed upward.

41)
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Solution: "graphical) Using the scale 1 inch represents
400 pounds, represents F1 , ir represents F2 r
represents F

3
.

it+ represents the resultant of F
1

F
2 $

F
3

Its length is a little less than 5/2 inches; its direction is

about

3. If F and G are two forces which have the same

direction, then they have a numerical ratio and

there is a number r such that r times force F

is equivalent to force G . Moreover if F is the

vector which repreeents force F then rF is the

vector which represents force G where r is the

ratio of force G to force F .

Example Emily and Elsie are identical twins. They are

sitting on a fence. If F represents the total force Emily and

Elsie exert on the fence and if represents the force the

fence exerts on Emily alone, express

(a) Tr in terms of tr .

(b) in terms of .

Solution:

(a) .

(b) - .

41
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A body at rest is said to be in equilibrium. It is a fact

of physics that if a body is at rest the resultant of all the

forces acting on the body has magnitude zero. (Note: The

converse of this is not true, since the resultant of all the

forces which act on a moving body can also be zer According

to the laws of physics, if the sum of all the folic-8 which act

on a body is zero, then the body must be either at rest or it

must move in a straight lin .1!th constant speed.)

Exercises c)a

1. A weight is suspended by ropes as shown in the figure.

If the weight weit6hs 10 pounds, what is the force

exerted on the junction C by the rope CB ?

2. A weight of 1,000 pounds is suspended from wires as

shown in the figure.

HORIZONTAL



The distance AB is 20 feet. AC is 10 feet, and CB
is 101/Y feet. What force does the wire AC exert on the

junction C ? What force does the wire BC exert on C ?

If all three wires are about equally strong, which wire is

most likely to break? Which wire is least likely to break?

3. A 5,000 pound weight is suspended as shown in the figure.

Find the tension in each of the ropes CA CB , and CW .

A barrel is held in place on an inclined plane EF by a

force OP operating parallel to the plane and another

operating perpendicular to it. (See diagram.)

If the weight of the barrel is 300 pounds, (10W1 = 300)

and the plane makes an angle of 23° with the horizontal,

find 16,1 and (OZ.' . (Hint: Introduce a coordinate

system with origin at 0 and OW as negative y-axis.)
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5. A weight is suspended by ropes as shown in the figure. If

the weight weighs 20 pounds, what is the force exerted on

the junction C by the rope CB ? By the rope AC ? If

AC and CB are equally strong, which one is more likely

to break?

1. HORIZONTAL

A 500 pound weight is suspended as shown in the figure.

Find each of the forces exerted on point C .

500 lb WEIGHT

7. A 2,000 pound weight is lifted at constant speed, as shown

in the diagram. Find each of the forces exerted on point C
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LIFT
PROPELLER THRUST

DRAG FORCE OF GRAVITY

The motion of airplanes provides another application of
vectors. Some technical terms involved are listed and
illustrated in the figure.

Lift: Fr--a force perpendicular to the direction of

motion. This is the "liftingforce" of the wing.

Gravity; Fg--a force directed downward.

Propeller thrust: Fa--a forward force in the

direction of motion.

Fa--a backward force parallel to the motion.

This force is due to wind resistance.

Effective propeller thrust: Fja--the propeller thrust

minus the drag.

The physical principle we shall use states that a body in
motion will continue to move in a straight line with

constant speed if and only if the resultant of all the
forces acting on the body is zero.

8. An airplane weighing 6:000 pounds climbs steadily upwards
at an angle of 300 . Find the effective propeller thrust
and the lift.

4 ir
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9. An airplane weighing 10,000 pounds climbs at an angle of

15° with constant speed. Find the effective propeller

thrust and the lift.

10. A motorless glider descends at an angle of 10° with

constant speed. If the glider and occupant together weigh

500 pounds, find the drag and the lift.

The term "work" as the physicists use it also provides an

example of a concept which can be discussed in terms of vectors.

Consider for instance a tractor pulling a box-car along a track.

TRACK
(DIRECTION OF MOTION)

TRACTOR

Figure 5a

The effect of the tractor's force depends on the angle 8 . It

also involves the force itself and the displacement produced.

The term "work," as used in physics, is given in this case by .

F S , where F is the force-vector of the tractor and where

S is the displacement of the box-car.

More generally, if a force F acts on a body and produces

a displacement S while it acts, then the work done by the force

is defined to be F S 0 where F is the vector which represents

the force and where S is the vector which represents the dis-

placement.

Example Lis. If the tractor of Figure 5a exerts a force of

1,000 pounds at an angle of 30° to the track, how much work

does the tractor do in moving a string of cars 20000 feet?

4



Solution: Evaluate the expression 04 11r1 cos e where

FI . 1,000 pounds, 01 = 2,000 feet, cos 9 - .866 The value

of this product is 1,732,000 foot pounds.

Exercises a

1. A sled is pulled a distance of d feet by a force of 2

pounds which makes an angle of 0 with the horizontal.

Find the work done if

(a) d = 10 feet, p 10 pounds, 9 = 100 .

(b) d = 100 feet, p = 10 pounds, e . 20° .

(c) d = 1,000 feet, p - 10 pounds, 9 = 30°

How far can the sled be dragged if the number of available

foot pounds of work is 1,000 and if

(d) p = 10 pounds, 9 = 100 .

(e) p = 100 pounds, 9 = 20o

(f) p = 100 pounds, e 0° .

(g) p 100 pounds, e . 89° .

2. The drawing shows a smooth incline d feet long which

makes an angle 9 with the horizontal.

How much

from R
work is done in moving an obect weighing E pounds

to S if

10 feet, p = 10 pounds, 0 - 10°

100 feet, p = 10 pounds, 8 = 20°

100 feet, p . 10 pounds, G = 30°

4 7
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How far can the weight be moved if the number of available

foot pounds is 1,000 and if

(d) p =

(e) p =

(f) p =

(g) p =

10 pounds, 9 = 10°

10 pounds, 0

100 pounds, G = 1° .

100 pounds, 0 is 89°

Velocitx is another concept of physics that can be

represented by means of vectors. In ordinary language the words

"speed" and "velocity" are used as synonyms. In physics the word

"speedr refers to the actual time rate of change of distance (the

kind of information supplied by an automobile speedometer), and

"velocity" refers to the vector whose direction is the direction

of the motion and whose length represents the speed on some given

scale. When velocities are represented by vectors, the lengths

of these vectors give the corresponding speeds.

Figure 5b shows vectors which represent some of the

velocities of a body moving around a circle with constant speed.

Figure 5b

It is easy to imagine situations in which velocities are

compounded out of other velocities. For instance, a man walking

across the deck of a moving boat has a velocity relative to the

water which is compounded out of his velocity relative to the

boat and out of the boat's velocity relative to the water. It is

a principle of physics that the vector which represents such a

compound velocity is the sum of the vectors which represent the

individual velocities.
4
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24Eipjalt. A ship sails east at 20.0 miles per hour. A

man walks acToss its deck toward the south at 4.0 miles per
hour. What is the man's velocity relative to the water?

Bolution: In the figure, It

represents the ship's velocity

relative to the water, Y
represents the man's velocity

relative to the ship. Conse-

quently, 2+1 represents

the mants velocity relative to

the water. Its length is

140.0 2 + 4.0
2

22 20.4

and its direction is 22° south of east.

Exercises

1. A river 1 mile wide flows at the

rate of 3 miles per hour. A man

rows across the river, starting at

A and aiming his boat toward B

the nearest point on the opposite

shore as shown in the diagram. If

it took 30 minutes for him to make

the trip, how far did he row?

2. A river is mile wide and flows at the rate of 4 miles

per hour. A man rows across the river in 25 minutes,

landing 1.3 miles farther downstream on the opposite

shore. How far did he row? In what direction did he head?

3. A river one mile wide flows at a rate of 4 miles per hour.

A man wishes to row in a straight line to a point on the

opposite shore two miles upstream. How fast must he row

in order to make the trip in one hour?

4. A body starts at (0,0) at the time t = 0 . It moves with

constant velocity, and 20 seconds later it is at the point

(40,30) . Find its speed and its velocity, if one unit of

length of vector corresponds to 100 feet per second.

4
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5. A body moves with constant velocity which is represented by

the vector V= 101. + 10T. If the body is at the point

(0,1) at time t is 2 1 where will it be wh:n t = 15 ?

The scale is: One unit of length of vector corresponds to

10 miles per hour; the time t is measured in hours.

6. Ship A starts from point (2,4) at time t = 0 Its

velocity is constant, and represented by the vector

Va = gt - . Ship B starts at the point (-1,-1) at

time t = 1 . Its velocity is also constant, and is

represented by the vector Vb = 71 + T . Will the ships

collide? (Assume that a consistent scale has been used in

setting up the vector representation.)

7. Ship A starts at point (2,7) at time t = 0 . Its

(constant) velocity is represented by the vector

V
a

2. 3T - 21 . Ship B starts at point (-1,-1) at time

t 1 . Its (constant) velocity is represented by the

vector Vics = 51 . Will the ships collide?

*8 A river is -f mile wide and flows at the rate of 4 miles

per hour. A man can row at the rate of 3 miles per hour.

If he starts from point A and rows to the opposite shore,

what is the farthest point upstream at which he can reach

the opposite shore? In what direction should he head?

Exercises

1. Show each of the following graphically:

(a) 3T + 8-tr + 5Z
(b) 3-f + 311
(c) 41- +

( d ) 5T + .

(e) + + .

2. Find -11 if:

(f)

(g) 7 .

(h) 5T .

(i) tr .

( j ) 811' + 83" + 3rc

(a) -Alb= St 2jk+ ; 2T + 2rc .

(b) . 3"T + 4T - ; 2T + 2 + 21-Z .

(c) + 31Z. ; = LIT .

(d)

(e ) -jg 4-jb + 2-1Z ; 5t

511
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3. Find the cosine of the angle between vectors 16 and th in

each part of Problem 2.

4. Find the cosine of the angle between the vectors -Jr and S
.if "rws 316+ 21' - lb and vr. - 33-4. 61-1A .

*5. A lighting fixture is suspended as shown:

View from top

Perspective view

Side view
(the angle is
shown in its
true shape;
has a measure
of 600

Vtrtical view

The fixture weighs 15 pounds. Find the tension in each

of the supporting cables.

6. An airplane is climbing at an angle of 300 . Its climbing

speed is 100 m.p.h. Although a wind is blowing from west

to east with a velocity of 30 m.p.h., the pilot wishes to

climb while heading due north. What is the ground speed of

the airplane?

Suppose that in Problem 6 the pilot climbs at an angle Of

30° , but does not insist on heading north. What is the

fastest ground speed that he can achieve? Which way should

he head to achieve this speed? What is the least ground

speed that he can achieve? Which way should he head to

achieve this?

8. Prove that

a(x d) + b(y e) + c(z - f) 0

is the equation of a plane through the point Q(d,e,f)

with the normal vector

gi- it + 131.+
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9. Find a vector normal to the plane

7x - 3y + 5z . 12 .

10. Find the distance from the point (0,0,0) to the plane

5x + 12y - z 1 .

11. Find the distance from the plane

x + gy - 3z 1

to the origin.

6. Vectors as a Formal Mathematical System.

In our discussion of forces and veldcities by means of

vectors we made a few assumptions which we did not justify. We

applied vector methods to the solution of force and velocity

problems in a fashion which turns out to be correct but which we

have not backed up with a convincing argument. Our thinking was

something like this. "Some of the rules that forces obey are

very much like the rules that vectors obey. Therefore we can

talk abou. forces as though they were vectors." This is not

really a sound argument, and if it were trusted in all cases it

could lead to chaos. For instance, some of the rules that real

numbers obey are the rules that integers obey, and it is not the

case that real numbers can be regarded as integers.

Nevertheless, it really was correct to treat forces as

vectors and we now explore a point of view which gives convincing

evidence for this statement. The key fact in this examination is

that every mathematical system which obeys certain of the laws

which vectors obey must be essentially the same as the system of

vectors itself.

We now formulate three goals:

1. To list the rules in question.

2. To give a precise specification of what we mean by saying

that a mathematical system is "essentially the same" as a

system of vectors.



3. So prove that systems which obey the stated rules are

essentially the same as the system of vectors.

I. We state certain rules which vectors have been shown to
obey. We haveaset Sotwo operations ® ,O,for which,
for all asp, 7,inSand for all real numbersrms

(1) a 0 0 is in S .

(2) a(Dgia ge a
(3) a0(g07)11,(a00)® 7

(4) There is a zero element 43 in S such that

acH, i c,

(5) Each a has an additive inverse - a for which

(6) r Øaiamn S .

(7) r 0 (s 0 a ) (rs) 0 a .

(8) (r + s) 0 a . (r 0 a ) (i) (ti 0 a )
(9) r 0 ( a

L3 ) (r a ) 0 (r 13)

(10) 1 0 a 111 a .

(11) There are two members g and T of S such that
each member a of S has a unique representation.

a 'm (a 0 g ) 0 (b 0 7 )

II. We have already shown that vectors satisfy such rules,
where S is interpreted as the set of vectors, 0 is inter-
preted as ordinary + for vectors and where 0 is interpreted
as scalar multiplication. We take it as given (by physicists

presumably) that forces also satisfy these rules, where S is

the set of forces, a 0 means the resultant of a and g

and 0 means scalar multiplication. We are to show that

forces are essentially the same as vectors. What do we mean by
"essentially the same?" We mean that the system of forces is

isomorphic to the system of vectors. What do we mean by
"isomorphic"? That there is a one-to-one correspondence between
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the set of forces and the set of vectors such that, if force a

corresponds to vector A and if force g corresponds to vector

Tr, then a ® 0 corresponds to vector A + and force

r 0 a corre sponds to vector rA .

III. We now state and prove the promised theorem.

THEOREM. Any system S which satisfies Rules 1 - 11 is

isomorphic to the system of vectors in a plane.

proof: We first set up a one-to-one correspondence between

the members of S and the vectors. For each a of S we

invoke Item 11 to write

a = (a 0 y) ® (b 0 w) .

The pair (a,b) which figures in this expression determines a

unique vector A , namely [sob] , which we pair with a This

process assigns to each a of S a vector A as its image. We

must ehow that; if [sob] is the image of a and if (c,d) is

the image of 0 ,then [a +c,b+ d] is the image of

a + 0 and that [raprb] is the image of r a To

prove the firs% write

a 2g (a C Y) (b(i)w)

g (c 0 5r)k) (d(2)w)

Therefore a ® g ((a 0 y) ® (bo w)) 0 ((co y)e(dow))
which equals using Rules 2 and 3,

((a y) 0 (c C) y)) 0 ((b w) 0 (d w)

This in turn equals

((a + c) Øy) ((b + d) C) w)

by virtue of Rule 8. We see then that our one-to-one corre-

spondence assigns (a + c b + d] to a + g .
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We now examine r
. We write

r Qar 0 ((a y) C-7-) (b w))

which by Rule 9 can be written as

r (a y) 0 r (b w

According to Rule 7, this last equals

((ra) 0 y) ((rb) 0 w)

whence the image of r 0 a is indeed (raorb]

This completes our pr-of. Notice that we did not use all

the rules given. They are in fact redundant. If the last rule

is left out, the remaining set of rules is not redundant, and is

the set of axioms which defines a vector space. The Rules 1 - 11

are axioms for a more special mathematical system--a two-

dimensional vector space.

We have shown that every system which satisfies Rules 1 - 11

is isomorphic to our system of vectors. We have not shown that

the system of forces satisfies these rules. We take the

physicist's word for this. We have not shown that to be

"isomorphic" really means to be "essentially the same."

Exercises 6

1. Let S be the system of complex numbers. Does S satisfy
Rules 1 - 11 if 0 is interpreted as ordinary addition
of complex numbers and 0 as ordinary multiplication of

a real number by a complex number? (Hint: In checking
Rule 11, try 1 for y and i for w ) .

2. Let S be the set of all ordered pairs (a,b) of real

numbers, let 0 be defined by (a,b) (c,d)

(a + c b + d) , and let be defined by

r (a,b) q2-) .

Which of the Rules 1 - 11 does this system obey?



3. Let S be the set of all ordered pairs (a,b) of real

numbers, let 0 be defined by

(a,b) (c,d ) 04_2.

and let 0 be defined by

r (a,b) (ralrb) .

Which of the Rules 1 - 11 does this system obey?


